Technology

How Does Poor Data Quality Amplify in Low-Resource Language Models?

Written by Nick Pegg

While͏͏ the͏͏ development͏͏ of͏͏ natural͏͏ language͏͏ processing͏͏ (NLP)͏͏ models͏͏ works͏͏ effectively͏͏ with͏͏ high-resource͏͏ languages͏͏ like͏͏ English,͏͏ which͏͏ have͏͏ a͏͏ massive͏͏ digital͏͏ footprint,͏͏ low-resource͏͏ languages͏͏ present͏͏ significant͏͏ challenges,͏͏ as͏͏ individual͏͏ annotation͏͏ errors͏͏ can͏͏ be͏͏ amplified͏͏ across͏͏ the͏͏ dataset.͏͏ These͏͏ challenges͏͏ lead͏͏ to͏͏ consequences,͏͏ including͏͏ poor͏͏ model͏͏ performance͏͏ and͏͏ compliance͏͏ risks.͏͏ 

This͏͏ blog͏͏ examines͏͏ the͏͏ challenges͏͏ and͏͏ impact͏͏ of͏͏ poor-quality͏͏ training͏͏ datasets͏͏ in͏͏ low-resource͏͏ language͏͏ models͏͏ and͏͏ provides͏͏ quality͏͏ control͏͏ strategies͏͏ to͏͏ mitigate͏͏ risks͏͏ and͏͏ gain͏͏ a͏͏ competitive͏͏ edge.

The͏͏ Challenges͏͏ of͏͏ Low-Resource͏͏ Language

Lack͏͏ of͏͏ Annotated͏͏ Datasets

Machine͏͏ Learning͏͏ (ML)͏͏ models͏͏ are͏͏ trained͏͏ on͏͏ large͏͏ volumes͏͏ of͏͏ annotated͏͏ datasets.͏͏ These͏͏ datasets͏͏ are͏͏ carefully͏͏ labeled͏͏ by͏͏ human͏͏ annotators͏͏ and͏͏ can͏͏ be͏͏ in͏͏ various͏͏ formats,͏͏ including͏͏ text,͏͏ images,͏͏ or͏͏ speech,͏͏ for͏͏ the͏͏ AI͏͏ model͏͏ to͏͏ “learn”͏͏ by͏͏ detecting͏͏ patterns.͏͏ Low-resource͏͏ languages͏͏ have͏͏ minimal͏͏ digital͏͏ footprints͏͏ and,͏͏ therefore,͏͏ fewer͏͏ annotated͏͏ datasets.͏͏ For͏͏ instance,͏͏ the͏͏ English͏͏ language͏͏ has͏͏ billions͏͏ of͏͏ web͏͏ pages,͏͏ social͏͏ media͏͏ posts,͏͏ and͏͏ digital͏͏ publications͏͏ that͏͏ annotation͏͏ companies͏͏ can͏͏ process͏͏ at͏͏ scale.͏͏ While͏͏ data͏͏ annotation͏͏ for͏͏ low-resource͏͏ languages͏͏ such͏͏ as͏͏ Quechua͏͏ is͏͏ a͏͏ challenge,͏͏ since͏͏ despite͏͏ having͏͏ millions͏͏ of͏͏ speakers,͏͏ it͏͏ has͏͏ limited͏͏ digital͏͏ content͏͏ and͏͏ therefore͏͏ fewer͏͏ commercially͏͏ available͏͏ annotated͏͏ datasets.͏͏

During͏͏ the͏͏ development͏͏ of͏͏ AI/ML͏ models,͏͏ building͏͏ such͏͏ datasets͏͏ from͏͏ scratch͏͏ means͏͏ hiring͏͏ native͏͏ speakers͏͏ and͏͏ subject͏͏ matter͏͏ experts͏͏ to͏͏ manually͏͏ label͏͏ thousands͏͏ of͏͏ records—a͏͏ process͏͏ that͏͏ is͏͏ time-intensive,͏͏ expensive,͏͏ and͏͏ difficult͏͏ to͏͏ scale.͏͏ 

Dialect͏͏ and͏͏ Regional͏͏ Fragmentation

There͏͏ are͏͏ low-resource͏͏ languages͏͏ that͏͏ are͏͏ spoken͏͏ in͏͏ multiple͏͏ dialects.͏͏ When͏͏ these͏͏ dialects͏͏ are͏͏ combined͏͏ in͏͏ training͏͏ data,͏͏ AI͏͏ models͏͏ learn͏͏ conflicting͏͏ rules,͏͏ which͏͏ causes͏͏ the͏͏ model͏͏ to͏͏ generate͏͏ different͏͏ outputs.͏͏ The͏͏ word͏͏ “bara”͏͏ means͏͏ “outside”͏͏ in͏͏ Egyptian͏͏ Arabic͏͏ and͏͏ can͏͏ mean͏͏ “just͏͏ now”͏͏ in͏͏ Levantine͏͏ Arabic.͏͏ This͏͏ leads͏͏ to͏͏ confusion͏͏ for͏͏ different͏͏ AI͏͏ models,͏͏ such͏͏ as:

-͏͏ Chatbots͏͏ (wrong͏͏ intent͏͏ detection)

-͏͏ Navigation͏͏ apps͏͏ (misunderstanding͏͏ location͏͏ vs.͏͏ time)

-͏͏ Customer͏͏ service͏͏ systems͏͏ (frustrating,͏͏ irrelevant͏͏ responses)

Lack͏͏ of͏͏ Unlabelled͏͏ Datasets

Primitive͏͏ text͏͏ corpora͏͏ needed͏͏ to͏͏ prepare͏͏ annotated͏͏ datasets͏͏ are͏͏ either͏͏ not͏͏ available͏͏ digitally͏͏ or͏͏ are͏͏ fragmented,͏͏ making͏͏ it͏͏ necessary͏͏ to͏͏ invest͏͏ heavily͏͏ in͏͏ data͏͏ collection͏͏ and͏͏ data͏͏ cleansing͏͏ services.͏͏ This͏͏ creates͏͏ a͏͏ major͏͏ operational͏͏ bottleneck͏͏ for͏͏ businesses,͏͏ as͏͏ it͏͏ not͏͏ only͏͏ requires͏͏ investment͏͏ but͏͏ also͏͏ increases͏͏ the͏͏ development͏͏ and͏͏ deployment͏͏ time͏͏ for͏͏ AI͏͏ models.͏͏ 

Impact͏͏ of͏͏ Poor͏͏ Data͏͏ Quality͏͏ in͏͏ NLP͏͏ Models

Poor͏͏ Model͏͏ Performance

A͏͏ Stanford͏͏ University͏͏ report͏͏ stated͏͏ that,͏͏ “If͏͏ we͏͏ have͏͏ language͏͏ technology͏͏ that͏͏ doesn’t͏͏ work͏͏ for͏͏ people͏͏ in͏͏ the͏͏ language͏͏ that͏͏ they͏͏ speak,͏͏ those͏͏ communities͏͏ don’t͏͏ see͏͏ the͏͏ technology͏͏ boost͏͏ that͏͏ other͏͏ people͏͏ might͏͏ have.”͏͏ This͏͏ statement͏͏ highlights͏͏ the͏͏ importance͏͏ of͏͏ high-quality͏͏ training͏͏ data͏͏ for͏͏ minority͏͏ languages͏͏ in͏͏ AI͏͏ models.͏͏ When͏͏ NLP͏͏ models͏͏ are͏͏ trained͏͏ on͏͏ poor-quality͏͏ data,͏͏ it͏͏ leads͏͏ to͏͏ performance͏͏ issues͏͏ such͏͏ as͏͏ bias͏͏ amplification,͏͏ systematic͏͏ inaccuracies,͏͏ and͏͏ output͏͏ inconsistency.͏͏ Unlike͏͏ high-resource͏͏ languages,͏͏ the͏͏ inaccuracies͏͏ don’t͏͏ get͏͏ diluted͏͏ across͏͏ data͏͏ corpora;͏͏ the͏͏ annotation͏͏ errors͏͏ get͏͏ transformed͏͏ into͏͏ systematic͏͏ behaviours.͏͏

Increased͏͏ Development͏͏ Time͏͏ &͏͏ Cost

In͏͏ the͏͏ case͏͏ of͏͏ low-resource͏͏ languages,͏͏ the͏͏ data͏͏ is͏͏ scarce͏͏ or͏͏ fragmented.͏͏ The͏͏ limited͏͏ availability͏͏ of͏͏ a͏͏ high-quality͏͏ training͏͏ dataset͏͏ demands͏͏ subject͏͏ matter͏͏ experts͏͏ or͏͏ native͏͏ speaker͏͏ annotators.͏͏ This͏͏ manual͏͏ intervention͏͏ extends͏͏ the͏͏ model͏͏ development͏͏ time͏͏ beyond͏͏ standard͏͏ timelines.͏͏ Moreover,͏͏ the͏͏ availability͏͏ of͏͏ these͏͏ resources͏͏ dictates͏͏ the͏͏ project͏͏ timelines.͏͏ At͏͏ times,͏͏ inconsistencies͏͏ or͏͏ inaccuracies͏͏ in͏͏ NLP͏͏ models͏͏ built͏͏ on͏͏ low-resource͏͏ languages͏͏ are͏͏ detected͏͏ in͏͏ post-development,͏͏ which͏͏ requires͏͏ rebuilding͏͏ of͏͏ datasets͏͏ with͏͏ proper͏͏ quality͏͏ control.͏͏ The͏͏ process͏͏ adds͏͏ significant͏͏ development͏͏ time͏͏ to͏͏ the͏͏ project.

Wasted͏͏ Resources͏͏ on͏͏ Noisy͏͏ Data͏͏ ͏͏ ͏͏ ͏͏ ͏͏ 

The͏͏ data͏͏ corpora͏͏ of͏͏ low-resource͏͏ languages͏͏ require͏͏ custom͏͏ preprocessing,͏͏ specialized͏͏ tokenization,͏͏ and͏͏ manual͏͏ quality͏͏ verification.͏͏ However,͏͏ due͏͏ to͏͏ the͏͏ limited͏͏ availability͏͏ of͏͏ these͏͏ datasets,͏͏ fundamental͏͏ data͏͏ quality͏͏ issues͏͏ emerge,͏͏ such͏͏ as;

  • Individual͏͏ errors͏͏ or͏͏ bias͏͏ contaminate͏͏ the͏͏ majority͏͏ of͏͏ the͏͏ dataset.
  • The͏͏ quality͏͏ benchmark͏͏ is͏͏ often͏͏ missing,͏͏ compromising͏͏ data͏͏ validation͏͏ processes.
  • Small͏͏ datasets͏͏ hide͏͏ systematic͏͏ inaccuracies͏͏ that͏͏ are͏͏ difficult͏͏ to͏͏ detect.͏͏ 

When͏͏ these͏͏ quality͏͏ issues͏͏ surface͏͏ late͏͏ in͏͏ development͏͏ cycles,͏͏ reversing͏͏ the͏͏ effects͏͏ becomes͏͏ irreversible.͏͏ Since͏͏ organizations͏͏ can’t͏͏ purchase͏͏ alternative͏͏ datasets,͏͏ they͏͏ demand͏͏ rebuilding͏͏ of͏͏ the͏͏ data͏͏ collection͏͏ and͏͏ annotation͏͏ processes.͏͏ This͏͏ leads͏͏ to͏͏ wastage͏͏ of͏͏ resources͏͏ allocated͏͏ during͏͏ the͏͏ entire͏͏ development͏͏ phase.

Regulatory͏͏ and͏͏ Compliance͏͏ Risks

The͏͏ errors͏͏ and͏͏ inaccuracies͏͏ in͏͏ NLP͏͏ models͏͏ built͏͏ on͏͏ low-resource͏͏ languages͏͏ create͏͏ compliance͏͏ issues͏͏ in͏͏ regulated͏͏ industries.͏͏ For͏͏ instance,͏͏ a͏͏ patient-facing͏͏ chatbot͏͏ trained͏͏ on͏͏ insufficient͏͏ Navajo͏͏ medical͏͏ terminology͏͏ might͏͏ consistently͏͏ misguide͏͏ the͏͏ patient͏͏ due͏͏ to͏͏ mistranslated͏͏ dosage͏͏ instructions.͏͏ This͏͏ leads͏͏ to͏͏ FDA͏͏ regulatory͏͏ action͏͏ over͏͏ training͏͏ data͏͏ provenance͏͏ and͏͏ quality͏͏ controls.

Strategies͏͏ for͏͏ Quality͏͏ Control͏͏ in͏͏ Low-Resource͏͏ Language͏͏ Model͏͏ Training

Multi-Annotator͏͏ Consensus͏͏ Implementation

Data͏͏ annotation͏͏ for͏͏ low-resource͏͏ languages͏͏ is͏͏ challenging,͏͏ as͏͏ the͏͏ scarcity͏͏ of͏͏ training͏͏ data͏͏ amplifies͏͏ every͏͏ annotation͏͏ error.͏͏ To͏͏ overcome͏͏ the͏͏ challenge͏͏ of͏͏ dialect͏͏ variations͏͏ and͏͏ eliminate͏͏ inaccuracies,͏͏ deploy͏͏ a͏͏ multi-annotator͏͏ workflow͏͏ to͏͏ act͏͏ as͏͏ a͏͏ safeguard͏͏ against͏͏ systematic͏͏ model͏͏ failures.͏͏ 

The͏͏ best͏͏ practices͏͏ to͏͏ implement͏͏ a͏͏ multi-annotator͏͏ workflow͏͏ are;

-͏͏ Establish͏͏ clear͏͏ guidelines͏͏ to͏͏ address͏͏ disputes͏͏ and͏͏ maintain͏͏ annotator͏͏ diversity͏͏ across͏͏ geographic͏͏ regions,͏͏ thereby͏͏ capturing͏͏ dialect͏͏ variations.

-͏͏ Use͏͏ inter-annotator͏͏ agreement͏͏ metrics͏͏ to͏͏ ensure͏͏ consistency,͏͏ iterative͏͏ feedback͏͏ loops,͏͏ and͏͏ resolve͏͏ discrepancies͏͏ before͏͏ training͏͏ begins.

-͏͏ Automated͏͏ consensus͏͏ tracking͏͏ systems͏͏ should͏͏ flag͏͏ annotation͏͏ pairs͏͏ with͏͏ low͏͏ agreement͏͏ scores͏͏ and͏͏ route͏͏ them͏͏ for͏͏ expert͏͏ review,͏͏ ensuring͏͏ quality͏͏ gates͏͏ prevent͏͏ problematic͏͏ data͏͏ from͏͏ entering͏͏ the͏͏ training͏͏ pipeline.

Native͏͏ Speaker͏͏ Validation͏͏ Framework

While͏͏ building͏͏ quality͏͏ training͏͏ datasets͏͏ for͏͏ minority͏͏ languages,͏͏ incorporate͏͏ native͏͏ speakers͏͏ into͏͏ the͏͏ model͏͏ development͏͏ cycles.͏͏ This͏͏ approach͏͏ is͏͏ particularly͏͏ crucial͏͏ for͏͏ languages͏͏ with͏͏ multiple͏͏ dialects͏͏ and͏͏ that͏͏ are͏͏ culturally͏͏ sensitive.͏͏ Validation͏͏ from͏͏ native͏͏ speakers͏͏ brings͏͏ contextual͏͏ accuracy͏͏ into͏͏ the͏͏ language͏͏ models.

Cross-Lingual͏͏ Validation͏͏ Systems

The͏͏ process͏͏ of͏͏ cross-lingual͏͏ validation͏͏ leverages͏͏ high-resource͏͏ language͏͏ models͏͏ to͏͏ identify͏͏ anomalies͏͏ in͏͏ low-resource͏͏ training͏͏ data͏͏ through͏͏ comparative͏͏ analysis.͏͏ It͏͏ deploys͏͏ multilingual͏͏ transformer͏͏ models,͏͏ such͏͏ as͏͏ multilingual͏͏ BERT͏͏ (mBERT),͏͏ which͏͏ can͏͏ encode͏͏ 104͏͏ languages͏͏ using͏͏ a͏͏ shared͏͏ vocabulary.͏͏ This͏͏ approach͏͏ enables͏͏ targeted͏͏ manual͏͏ review͏͏ of͏͏ potentially͏͏ inaccurate͏͏ annotations͏͏ that͏͏ deviate͏͏ from͏͏ expected͏͏ cross-lingual͏͏ semantic͏͏ relationships.͏͏ 

While͏͏ this͏͏ method͏͏ cannot͏͏ replace͏͏ native͏͏ speaker͏͏ validation,͏͏ it͏͏ adds͏͏ a͏͏ quality͏͏ safeguard,͏͏ improving͏͏ overall͏͏ dataset͏͏ reliability͏͏ through͏͏ systematic͏͏ cross-linguistic͏͏ consistency͏͏ verification.

The͏͏ Strategic͏͏ Imperative

While͏͏ the͏͏ quality͏͏ control͏͏ measures͏͏ are͏͏ beneficial͏͏ during͏͏ the͏͏ development cycles,͏͏ businesses͏͏ that͏͏ are͏͏ gaining͏͏ a͏͏ competitive͏͏ edge͏͏ are͏͏ eliminating͏͏ these͏͏ complexities͏͏ at͏͏ pre-annotation͏͏ stages.͏͏ By͏͏ leveraging͏͏ data͏͏ cleansing͏͏ services,͏͏ organizations͏͏ mitigate͏͏ the͏͏ risk͏͏ of͏͏ extended͏͏ development͏͏ time͏͏ and͏͏ prevent͏͏ costly͏͏ annotation͏͏ work͏͏ on͏͏ fundamentally͏͏ flawed͏͏ datasets.͏͏

About the author

Nick Pegg